Page 1 of 3

Exercise 2

In Exercises 1–2, find a period of the given function and sketch its graph.

- (a) $\sin 7\pi x$,
- (b) $\sin n\pi x$ (*n* an integer),
- (c) $\cos mx$ (m an integer),
- (d) $\sin x + \cos x$,
- (e) $\sin^2 2x$.

Solution

Part (a)

The period of $\sin 7\pi x$ is

$$T = \frac{2\pi}{7\pi} = \frac{2}{7}.$$

Below is a graph of $\sin 7\pi x$ versus x. Notice that the graph repeats itself every 2/7 units.

Part (b)

The period of $\sin n\pi x$ is

$$T = \frac{2\pi}{n\pi} = \frac{2}{n}.$$

Below is a graph of $\sin n\pi x$ versus nx. Notice that the graph repeats itself every 2 units.

Part (c)

The period of $\cos mx$ is

$$T=\frac{2\pi}{m}$$

Below is a graph of $\cos mx$ versus mx. Notice that the graph repeats itself every 2π units.

Part (d)

The period of $\sin x$ is $\frac{2\pi}{1} = 2\pi$, and the period of $\cos x$ is $\frac{2\pi}{1} = 2\pi$. The least common multiple of 2π and 2π is 2π , so this is the period of $\sin x + \cos x$.

Part (e)

The period of $\sin^2 2x = \frac{1}{2}(1 - \cos 4x)$ is $\frac{2\pi}{4} = \frac{\pi}{2}$, so the graph repeats itself every $\pi/2$ units.

