## Exercise 2

In Exercises 1-2, find a period of the given function and sketch its graph.
(a) $\sin 7 \pi x$,
(b) $\sin n \pi x$ ( $n$ an integer),
(c) $\cos m x$ ( $m$ an integer $)$,
(d) $\sin x+\cos x$,
(e) $\sin ^{2} 2 x$.

## Solution

Part (a)
The period of $\sin 7 \pi x$ is

$$
T=\frac{2 \pi}{7 \pi}=\frac{2}{7} .
$$

Below is a graph of $\sin 7 \pi x$ versus $x$. Notice that the graph repeats itself every $2 / 7$ units.


## Part (b)

The period of $\sin n \pi x$ is

$$
T=\frac{2 \pi}{n \pi}=\frac{2}{n} .
$$

Below is a graph of $\sin n \pi x$ versus $n x$. Notice that the graph repeats itself every 2 units.


## Part (c)

The period of $\cos m x$ is

$$
T=\frac{2 \pi}{m} .
$$

Below is a graph of $\cos m x$ versus $m x$. Notice that the graph repeats itself every $2 \pi$ units.


## Part (d)

The period of $\sin x$ is $\frac{2 \pi}{1}=2 \pi$, and the period of $\cos x$ is $\frac{2 \pi}{1}=2 \pi$. The least common multiple of $2 \pi$ and $2 \pi$ is $2 \pi$, so this is the period of $\sin x+\cos x$.


## Part (e)

The period of $\sin ^{2} 2 x=\frac{1}{2}(1-\cos 4 x)$ is $\frac{2 \pi}{4}=\frac{\pi}{2}$, so the graph repeats itself every $\pi / 2$ units.


